Exploring Biomarker Profiles in the Screening of Sickle Cell Nephropathy

V. Hoving¹, A.E. Donker², D.W. Swinkels^{3,4} and S.E.M. Schols¹

¹ Department of Haematology, Radboud university medical center, Nijmegen, the Netherlands.

² Department of Paediatrics, Máxima Medical Center, Veldhoven, the Netherlands.

³ Radboud Laboratory for Diagnostics, Department of Laboratory Medicine, Radboud university medical center, Nijmegen, the Netherlands.

⁴ Sanquin Blood Bank, Amsterdam, the Netherlands.

Background: Sickle cell nephropathy is a major complication of sickle cell disease (SCD), leading to health and economic burdens. Early detection is important to prevent irreversible damage, however, conventional biomarkers often lack sensitivity for detecting early-stage nephropathy. This study aims to identify biomarker profiles across the most common SCD phenotypes (hemolysis-dominant and vaso-occlusive-dominant) to enhance early diagnosis.

Materials and methods: This cross-sectional study included SCD patients from the Radboud Iron Biobank, enrolled during routine follow-up visits. Patients were categorized by predominant phenotype for HbSS and HbS β^0 genotypes: hemolysis-dominant or vaso-occlusive dominant, and HbSC/HbSD genotypes. Urine and blood biomarkers were assessed during routine visits, with no signs of inflammation or crisis.

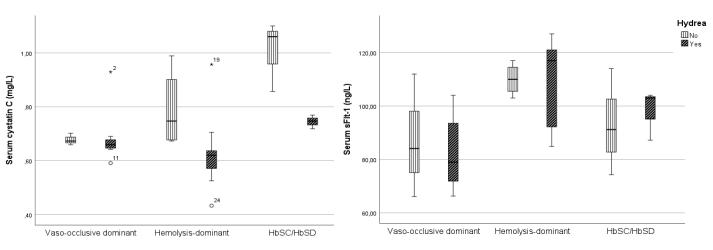
Glomerular markers included urinary albumin, total protein, and cystatin C; tubular markers included α 1-microglobulin (α 1MG), kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and urine osmolality. Vascular markers included soluble fms-like tyrosine kinase-1 (sFlt-1) and endothelin-1 (ET-1). Clinical data were extracted from electronic records, and informed consent was obtained from all participants.

Results: Thirty-one patients (median age 20.4 years, range 3.1-58.3) were included: 12 in the vasoocclusive dominant group, 13 in the hemolysis-dominant group, and 6 in the HbSC/HbSD-group. Most patients (n=21) were receiving hydroxyurea. Seven adults (23%) had microalbuminuria (range 3.7-12.0 mg/mmol) (**Table 1**). Serum creatinine and α 1-microglobulin-to-creatinine ratio (α 1MGCR) were significantly higher in albuminuric patients.

Serum cystatin C levels were highest in the HbSC/HbSD-group and did not vary with age or albuminuria status (**Figure 1**). Albumin-to-creatinine ratio (ACR) and serum creatinine were similar across subphenotypes (**Table 2**). Hydroxyurea treatment was associated with lower cystatin C in the HbSC/HbSD and hemolysis-dominant groups but not in the vaso-occlusive dominant group (**Figure 1**). The tubular markers α 1MG and KIM-1 showed no significant differences by subphenotype or hydroxyurea use, although there was a trend toward lower levels with hydroxyurea. Results for NGAL and KIM-1 will follow.

Among vascular markers, sFlt-1 was highest in the hemolysis-dominant group and correlated with hemolytic parameters, with no differences between hydroxyurea-treated and untreated patients (**Figure 1**).

Conclusion:


This exploratory study revealed that cystatin C-levels were highest in the HbSC/HbSD-group, with significantly lower levels in hydroxyurea-treated patients in both the HbSC/HbSD- and hemolysis-dominant groups, suggesting a potentially shared inflammatory pathway. Higher sFlt-1 levels in the hemolytic-dominant group indicated hemolysis-associated endothelial damage. The novel biomarkers showed no correlation with ACR, except for α 1MGCR.

Further research with larger sample sizes is needed to validate these findings and explore the underlying biological processes, potentially leading to more targeted treatment strategies.

	Total population n = 31	Vaso-occlusive dominant n = 12	Hemolysis-dominant n = 13	HbSC/HbSD n = 6	
Clinical findings					
Age (years), median (range)	19.9 (3.1-58.3)	19.8 (3.1-40.8)	19.9 (6.2-45.7)	16.7 (8.6-58.3)	
Gender					
- Male	15	7	6	2	
- Female	16	5	7	4	
Genotype					
HbSS	24	11 (92%)	13 (100%)	-	
HbSβ ⁰	1	1 (8%)	-	-	
HbSC	5	-	-	5 (83%)	
HbSD	1	-	-	1 (17%)	
Alpha thalassemia	9 (31%)	2 (17%)	6 (46%)	1 (17%)	
Treatment					
None	8	2	4	2	
Hydroxyurea	19	8	8	3	
Red cell transfusions (RCT)	2	1	-	1	
Hydroxyurea and RCT	1	1	-	-	
Hydroxyurea and ESA	1	0	1	-	
Normoalbuminuria	24	10	9	5	
Microalbuminuria	7	2	4	1	
Acute chest syndrome in history	10 (31%)	2 (17%)	5 (36%)	3 (50%)	

Table 2. Biomarkers associated with sickle cell nephropathy

	Vaso-occlusive dominant		Hemolysis-dominant		HbSC/HbSD		p-value Kruskal Wallis
Tubular markers	Median	Range	Median	Range	Median	Range	
α1MG/creatinine (mg/mmol)	1.31	(0.97-1.54)	1.23	(0.55-3.76)	1.62	(0.69-4.33)	0.850
KIM-1/creatinine (ng/mmol)	437	(63-702)	431	(168-503)	438	(259-527)	0.377
Urine osmolality (mOsm/kg)	0.41	(0.09-0.76)	0.83	(0.26-1.87)	0.37	(0.11-1.03)	0.805
Glomerular markers							
Albumin/creatinine (mg/mmol)	1.13	(0.41-8.75)	1.53	(0.50-8.75)	0.82	(0.27-12.00)	0.561
Total protein/creatinine (mg/mmol)	0.01	(0.00-0.02)	0.01	(0.00-0.02)	0.01	(0.00-0.02)	0.891
Serum cystatin C (mg/L)	0.66	(0.59-0.93)	0.64	(0.43-0.99)	0.81	(0.72-1.10)	0.014*
Serum creatinine (mmol/L)	54	(22-68)	52	(26-79)	54	(22-68)	0.453
Endothelial markers							
Serum sFlt-1 (ng/L)	81.6	(66.1-112.0)	111.0	(84.9-127.0)	97.1	(74.3-114.0)	0.006*

Figure 1. Boxplots represent markers per subgroup, grouped by treatment with or without hydroxyurea.

Left: Serum cystatin C levels were significantly higher in the HbSC/HbSD-group, while hydroxyurea-treated patients showed significantly lower cystatin C levels in both the hemolysis-dominant and HbSC/HbSD-group compared to patients without hydroxyurea. Right: Serum sFlt-1 levels were highest in the hemolysis-dominant group, with no significant differences between patients with or without hydroxyurea treatment.