Efficacy of $\alpha\beta$ T cell based immunotherapies relies on CCR5 expression in both CD4+ and CD8+ $\alpha\beta$ T cells

In this study we explore strategies to improve $\alpha\beta T$ cell infiltration within the tumor microenvironment (TME) in order to boost the efficacy of adoptive $\alpha\beta T$ cell therapies in various malignancies. Infiltration of tumor-reactive $\alpha\beta T$ cells, especially CD8+ $\alpha\beta T$ cells, correlates with improved clinical outcomes and responses to immunotherapies.

We used in vitro models, in which we examined the infiltration of BCMA-targeting CAR $\alpha\beta$ T cells (BCMA-CART) and BTN2/3-targeting $\gamma\delta$ TCR (TEG) engineered $\alpha\beta$ T cells and screened the supernatant for the presence of soluble factors. After identifying possibly relevant factors, we blocked these in further in vitro models to examine their relevance for $\alpha\beta$ T cell migration and $\alpha\beta$ T cell specific killing. In the following, we overexpressed CCR5 in the $\alpha\beta$ T cells used in the in vitro models and investigated the effect of CCR5 overexpression on $\alpha\beta$ T cell migration and $\alpha\beta$ T cell specific killing.

In the used *in vitro* models, we examined the infiltration of BCMA-targeting CAR $\alpha\beta$ T cells (BCMA-CART) and BTN2/3-targeting $\gamma\delta$ TCR (TEG) engineered $\alpha\beta$ T cells, finding that $\alpha\beta$ T cell infiltration was limited; particularly in the CD8+ T lymphocyte compartment. Chemokines including CCL4 were found to be essential for $\alpha\beta$ T cell migration in the TME, with blocking of these chemokines showing a reduction in $\alpha\beta$ T cell migration and tumor-specific killing. Furthermore, overexpressing the corresponding chemokine receptor CCR5 in tumor-reactive $\alpha\beta$ T cells significantly improved infiltration capacity and tumor targeting of engineered immune cells.

This study highlights the importance of improving $\alpha\beta T$ cell infiltration for $\alpha\beta T$ cell therapies and argues for the potential of CCR5 overexpression in CD8+ $\alpha\beta T$ cells for improving clinical outcomes, particularly in the treatment of solid malignancies.