Characterization of CMV induced alpha/beta and gamma/delta T cells after allogeneic stem-cell transplantation utilizing single cell RNA seq

Anniek Stuut¹, Anke Janssen², Peter Brazda¹, Froso Karaiskaki¹, Trudy Straetemans¹, Dennis Beringer¹, Zsolt Sebestyen¹, Julia Drylewicz¹, Moniek de Witte², Jürgen Kuball^{1,2}

1. Center for Translational Immunology, University Medical Center Utrecht, The Netherlands 2. Department of Hematology, University Medical Center Utrecht, The Netherlands

Background: Allogeneic stem cell transplantation (allo-SCT) remains the only curative option for various high risk hematological malignancies. To reduce the risk of graft versus host disease, we perform $ex\ vivo\ \alpha\beta T$ cell depletion before infusion, which is expected to result in an increased risk of viral reactivations such as cytomegalovirus (CMV). We and others have previously shown that after $\alpha\beta T$ cell depleted allo-SCT, early immune reconstitution and viral immunity relies predominantly on $\gamma\delta T$ and NK cells. Here we study how CMV contributes to the development of the innate and adaptive immune repertoires after T cell deplete and T cell replete allo-SCT.

Methods: Numerical reconstitution of $\alpha\beta T$ and $\gamma\delta T$ cells was analyzed in a retrospective cohort of patients who had received an $\alpha\beta T$ cell depleted allo-SCT (n=146) or T cell replete allo-SCT (n=67). For 30 $\alpha\beta T$ cell depleted allo-SCT patients, detailed flow cytometric analyses and next generation sequencing of the δ and β chain were performed. Furthermore, we performed 5' single cell RNA sequencing (scRNAseq) on patient samples ~1 year after SCT. We included patients that had undergone an $\alpha\beta T$ cell depleted allo-SCT (n=3) or T cell replete allo-SCT (n=3) and experienced a CMV reactivation after allo-SCT.

Results: In αβT cell depleted allo-SCT recipients both Vδ2⁻ and Vδ2⁺ γδT cells reconstituted early, reaching reference values within the first 100 days. CMV reactivation enhanced recovery of Vδ2⁻ T cells and CD8⁺ αβT cells. CD8⁺ αβT cell and Vδ1⁺ γδT cell expansion after CMV reactivation was driven by CD27^{low} T_{effector} cells. Interestingly, we observed that the dominance of Vδ2- γδT cells within the γδT cell repertoire lasted up to 3 years after allo-SCT, resulting in an inversed ratio of Vδ2+/Vδ2-γδT cells and associated with slow CD4⁺ αβT cell reconstitution. This was confirmed by 5' scRNAseq analyses 1 year post allo-SCT, where the major γδT cell population was Vδ2- and CD4⁺ αβT cells were scarce.

Conclusion: Early immune reconstitution after $\alpha\beta$ T cell depleted allo-SCT results in a marked expansion of V δ 2- $\gamma\delta$ T cells and CD8+ $\alpha\beta$ T cells, which is further increased by CMV reactivation. Moreover, the inversed ratio of V δ 2+/V δ 2- $\gamma\delta$ T cells in our cohort suggests V δ 2- $\gamma\delta$ T cells might contribute as regulators to balance the immune system during the absence of CD4+ $\alpha\beta$ T cells.